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SUMMARY 

In this paper we derive Lagrange's equations for a rigid body rotating about its centre of gravity. We base our 
calculations on the balance law of angular momentum and refrain from the use of the customary and defi- 
cient model in which a rigid body is regarded as a limiting case of a rigid system of mass points. After some 
kinematical preliminaries we proceed in two ways. First we apply coordinates to achieve our goal, and in a 
second approach we do without them. The latter analysis is seen to be very simple. 

1. Introduction 

The literature abounds in textbooks  on classical mechanics, treating the balance laws of  mass 

points and rigid bodies.  As a rule Lagrange's equations are presented for systems with con- 

straints. In general the methods used are standard and well-established, and usually much atten- 

t ion is paid to applications in science and engineering. We note that  recently some books have 

appeared the authors o f  which reformulate the foundations o f  classical mechanics using con- 

temporary  concepts from the calculus o f  manifolds. In this relation we ment ion the monograph 

o f  Arnold  [1], which excels in rigour and succintness. 

However, there is one proper ty ,  in our view a conceptual  shortcoming, these books have in 

common.  In deriving the two balance laws o f  a rigid body ,  viz., the balance o f  linear momentum 

and the balance of  angular momentum (with respect to a fixed point  of  reference or to the centre 

o f  gravity o f  the body) ,  only the balance law of  linear momentum of  a mass point  is invoked. 

As is well-known this is achieved by  assuming a rigid body  to consist o f  (an infinite number of) 

particles exerting central forces on each other in pairs. We are unable to understand this model.  

I t  would appear  that  it bears upon a medium provided with a microstructure in the form of  a 

system of  entangled spatial trusses: mass points connected by  an int~mite number  o f  massless 

springs, the stiffness o f  which is to be increased beyond all limits. Since this limiting process is 

incompatible  with the absence o f  forces other  than central ones, in our view the model  is de- 

ficient. 

We meet the same difficulty when we try to  follow the usual derivation o f  Lagrange's equa- 

t ions for a system with constraints from the balance law valid for a mass point  only.  The seeming 
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simplicity of the ensuing analysis and, as we presume, the influence of Whittaker's famous trea- 

tise [2] have induced that the dubious model found general favour here as well. However, there 
is a number of  authors which work the other way round. After having formulated the balance 
laws for points and bodies, they present Lagrange's equations more or less independently of the 
foregoing text. Checking these equations in the case of  mass points and rigid bodies they treat 
the internal forces in the latter as reaction forces, which by definition do not contribute to vir- 
tual work. This procedure, which works only one-way, can be accepted. 

Yet we have found a rational analysis leading from the balance laws to Lagrange's equations 
and vice versa only in a recent book written by Wang [3]. He accepts rigid bodies as primitive 
concepts like mass points and assigns one balance law, viz., that of linear momentum to a mass 
point and two balance laws, viz., that of linear momentum and that of angular momentum, to a 
rigid body. Considering a general system consisting of particles and rigid bodies with constraints, 
he subsequently establishes the exact and complete interrelations between the balance laws and 
the Lagrangian formalism. However, we note that his analysis is more involved than the tradi- 
tional one. We grant that for the greater part this is due to the fact that the kinematical descrip- 
tion of the rotation of a rigid body demands a more elaborate formalism than that of its transla- 
tion. 

In view of this we have tried to find an alternative analysis, simpler and clear, with the ulti- 
mate aim to oppose further application of the vague and improper model of a rigid body. In this 
paper we reconsider the problem of deriving Lagrange's equations starting from the balance laws 
as Wang has formulated them in [3]. Then, in order to avoid a cumbersome notation, we have 
singled out the rotational motion of one body about its centre of  gravity. (The analysis for mass 
points and for the translation of the centre of gravity of  a body can be accomplished in the cus- 
tomary way, as will be touched upon in Section 5). After a short description of the kinematics 

of  a rigid body in Section 2 and the introduction of virtual displacements and kinetic energy in 
Sections 3 and 4, respectively, we def'me our problem in Section 5. Then we proceed along two 
different lines. As Wang [3] applies Eulerian angles as coordinates for the rotational motion, in 
Section 6 we make use of  the orthogonal matrix associated with the rotation, the elements of 
which are referred to a fixed Cartesian system of axes without the intervention of Eulerian 
angles. In an alternative approach (Section 7) we refrain from the use of any coordinate system, 
(obviously with the exception of the concept of  generalized coordinates), and apply some simple 
identities from vector analysis. 

2. Kinematics of a rigid body 

In this section we consider a rigid body ~ moving in a three-dimensional space. We refer the- 
motion to a rectangular Cartesian coordinate system x l ,  x2, x3, which is fixed in space and has 
origin O and base vectors e~, e2, e3, (Fig. 2.1). A second rectangular Cartesian coordinate sys- 
tem ~1, ~2, ~3, is introduced that moves with M and has base vectors f l ,  f2, f3, and origin o. The 
relation between the x i- and the ~i" coordinates of  any point P o f ~  is 

x i=c i+Qi i~ / ,  i = 1 , 2 , 3 ,  (2.1) 
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×1 

(3 

~3 ~ B  

Figure 2.1. The coordinate system OX~ X 2 X 3 is fixed in space; the coordinate system o ~  ~2/~3 moves with 
the body d~. 

in which 

x i = coordinate with respect to the fixed basis, 
~i = coordinate with respect to the moving basis, 
c i = coordinate of  o with respect to the fixed basis, 
Q# = element o f  a proper orthogonal matrix Q, i.e., 

QQT = QTQ = I  and det Q = + 1. (2.2) 

We call ~i the convective coordinates. Obviously they are constant during the motion.  In (2.1) 
and subsequent expressions we apply the summation convention, implying summation over 
doubly repeated indices. Latin indices will assume the values 1 ,2  and 3. The relation (2.1) can 
be written in vector form as follows 

x = c + Q ~ ,  ( 2 . 3 )  

with x =xie i ,  c = ciei, ~ = ~if i  and Q = Qiiei®e/.  The relation (2.3) can be inverted 

= QT (x--e). (2.4) 

We describe a mot ion x = ~ (t) o f &  by prescribing the following functions of  the time t E 

e : ~ ( t )  and Q = Q ( t ) ,  (2.5) 
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so that with (2.3) we have 

~(t)=~(t)+O.(t)~. (2.6) 

In view of  (2.2) 1 we f'md 

(2.7) 

2. 

where we have written for short Q = dQ(t)/dt and have omitted the argument t. (When there is 

no risk o f  confusion we shall do this in subsequent expressions as well). 

Evidently, the tensor 

= ( 2 . 8 )  

• is skew-symmetric. We call ~2 = ~ (t) the spin tensor. Its axial vector w = ~ (t), satisfying 

V a 60 A a = ~2a, (2.9) 

is the angular velocity vector o f  the body. From (2.9) we fired the following two relations be- 

tween the components o f  ~2 and ¢o with respect to any rectangular Cartesian basis 

1 
~'2ij = -e/ /k 6o k and ~o i = - ~  eqk ~2ik, (2.10) 

where eqk denotes the permutation symbol. For the later use we mention the relation 

(2.11) 

which is a consequence o f  (2.7). 
Differentiating (2.6) with respect to t and using (2.4), (2.8) and (2.9) yields the following 

expression for the velocity v 

v -- ~(t)  -- ~( t )  -- ~(t) + ~ ( t )  ^ {~( t )  - ~ ( t ) } .  (2.12) 

At this stage we introduce the concept o f  generalized coordinates q a E  R ,  a = 1,2,  ..., n. We de- 
note the n-dimensional vector (ql, qZ ..... qn) by q E ~  n . In the usual way we assume that the 

instantaneous position o f  the body g is determined by the values assigned to these n parameters 
and the time t. This means that the following functions exist 

e = e (q, t) and Q = Q (q, t). (2.13) 

I f  t occurs as a parameter explicitly, the system is called rheonomic; if not,  then it is scleronomic. 

To defme a motion (2.5) we have to prescribe the functions 

q~ = ~ ( t ) ,  ~--  1 ,2 , . . . , n .  (2.14) 
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We note the identifies 

E(t) = e(~(t), t), Q(t) = Q(~(t), t) and ~(t) = x(~(t),  t), (2.15) 

where the function x(q, t) follows from (2.3) and (2.13), 

x(q, t) = e(q, t) + Q(q, t) ~. (2.16) 

In order to avoid a cumbersome notation we shall often omit the independent arguments in the 
sequel. For instance, if Q is considered as a function of  t, then we write Q instead of Q(t). 
When Q is defined as in (2.13) 2 , then we write Q (without upper tilde). The partial derivative 

d q=~.(t)) aQ(q, t)/aq ~ is abbreviated by aQ/aq ~, etc. Finally we write - ~  (... in order to indi- 

cate that the differentiation with respect to t has to be performed after the substitution of 
qa = c~ a (t) into the form between brackets. 

Since Q is orthogonal we have analogous to (2.7) 

aQ QT aQT = O. (2.17) aQ QT+Q aQT =0,  - ~ -  +Q at  
aq '~ aq ,~ 

For future use we derive from (2.17) 1 

OQ aQ T 
- - Q Q .  ( 2 . 1 8 )  

aq a aq a 

Using (2.14) in (2.13), (2.12) 1 , (2.8) and (2.10) 2 we find for the velocity 

I I + - ~ -  , (2.19) 

aq~ q=~'(t) q=ff(t) 

for the spin tensor 

(2.20) 

and for the angular velocity 

'~i = -~eu~, / + -57-  ak~. 
q=q(t) 

(2.21) 

In these expressions and following ones summation over Greek indices runs from 1 to n. In view 
of  the structure of these expressions, we define the following functions on the product space 
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IR n x F: n x ~ ,  the elements of  which are the n generalized coordinates q a E  R ,  (a = 1 ,2  ... . .  n) 
the n generalized velocities qa E R ,  (a = 1 ,2  ... . .  n) and the time t E R :  

the velocity ax ax 
v(q, ~, t)  = 0 a + - -  (2.22) 

aq~ at  ' 

the spin tensor ( a ( q ,  ci, t ) =  aQ 0~, + QT, (2.23) 
aq a 

and the angular velocity i aOj, qa  aQj, 

¢oi(q, ci, t) = - ~  eqk \ + T I  - Qkr (2.24) 
aqa 

We note that in this context  the quantities q~ are completely arbitrary and that until further 
notice there is no relation between q a and &a (t). (Tentatively the dot in q ~ only has a symbolic 
meaning and the notation is o f  some use at a later stage when the value of  ~ a is equated to qa  (t) 
actually). 

The following identities can be verified easily 

~(t) = v(~(t) ,  q(t) ,  t), ~(t) = a ( ~ ( t ) ,  ~l(t), t), c~(t) = co(~(t), ~l(t), t), (2.25) 

and 

av ax a ~  aQ 

a,~ " aq ~ aq '~ aq ~ 

Oc°i ~ aQjt 
- - -  2 e i j k  - Q k l '  
ail "~ aq ~ 

av 
aq ~ 

q=q'(t) 
dt 

m Q T ,  

av 

' 7 7  
q=q'(t) q=q(t) 

dt 
q=q'(t) 

(2.26) 

) 
where we have deleted the independent arguments q, ¢~ and t. 

From (2.26) 1 and-(2.26) 4 it follows that 

av 

q=q'(t) 
dt 

q=q'(t) ) " 
(2.27) 

We conclude this section by giving two identities which are crucial in the proofs given in the 
final two sections of  this paper: 

ax ac a ~  
- - -  + -  A (x--c), (2.28) 

aq ~ aq ~ aq ~ 
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and 

~16o 

3qa q--q'(t) 

~6o 
+ co A ..... 

aq ~ 
q=ff(t) q=q(t)) 

(2.29) 

To prove (2.28) we substitute (2.16) into (2.22) and get through the use of (2.4) and (2.9) 

3c 3c 
v(q, q, t) = qa + M + oa ^ (x--c). (2.30) 

3q a 

This relation and (2.26) 1 lead to (2.28). In order to prove (2.29) we proceed as follows. The ex- 
pression (2.30) is used in the left-hand side of (2.27) and subsequently (2.28) is applied, yielding 

a2c ~co (3oa ) 3___~v _ 32c qt3 + ~ + A (x--c) + 60 A A (X--C) . (2.31) 
3q ~ 3q~ 3q ~ Oq~ 3t Oq a Odl ~ 

Substituting (2.30) into the right-hand side of (2.27) and using (2.12) we get 

dt 

a2c 
m 

i}qa3q ~ 

d I 3C q=q'(t) ~60 = - -  . I .  

q=q'(t) 

q=~(t) 

q=q'(t) A (X--C)I 

~2 c 
3qa a t q=q'(t) 

+-h7 

aq ~ 
q=q'(t) 

A ( ~  A (~--~)).  (2.32) 

Then we substitute (2.14) into (2.31) and subtract (2.32). In view of (2.27) we arrive at 

~qa q=q'(t) ~}qC~ q=q'(t) 
ao~ )1  ^ (~_~)=0 
cqqr~ q=ff(t) 

(2.33) 

Since the point o can be chosen arbitrarily, the vector ( g - ~ )  can be assigned any possible 
value. In virtue of this we infer (2.29). 

3. Virtual displacements 

The Lagrangian formalism is closely related to the concept of virtual displacements. We intro- 
duce these in the following way. Considering the system at a certain time t, we assume the mo- 
mentary values of  the generalized coordinates and velocities to be known : qa = c~ a (t) and 
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qa = ~a (t), a --- 1, 2 . . . . .  n. Then we determine the kinematical effects occurring if one of the 
elements of  q, say q#, is changed by an infinitesimal amount 8q t~, while keeping the other ele- 
ments of  q, (~ and t constant. We call 8q# a virtual change and from (2.13) and (2.16) we calcu- 
late the increments 

8c ac 6q~ , 6 Q =  ~Q = 6q#, (fl not summed), (3. I) 
~q~ bq~ 

and the virtual displacement 6x of a point P of  the body 

8x ax Oc 0Q = 6q a = - -  6q a + - -  ~6q t~, (13 not summed). (3.2) 
aq # aq # bq ¢ 

Similar to (2.8) and (2.10) we define the skew-symmetric tensor 5 (b 

6 cI, = (6Q) Q T, (3.3) 

and introduce its axial vector 6 ~o 

= 1 5cbi k 1 OQit Qk t6q  tJ, ([3 not summed). (3.4) 6~o i - i e i i k  =--~ei lk  3q# 

Then we can write (3.2) in the form 

8x = 6c + 8~0 A (x--c), (3.5) 

in which 6e is the virtual translation and 5~0 is the virtual rotation pertaining to 6q ~. In the se- 

quel we shall apply the relation 

boa (3.6) 6~o = - -  6q t3, 
a,~t J 

which follows from (3.4) 2 and (2.26) 3 , 
For the sake of completeness and for later reference an expression for the virtual work 6~d 

is included in this section. To this end we assume that the field of  external forces per unit of 
volume K and moments per unit of volume M exerted on the body is known. Without loss of 

generality we choose the representation 

xEV, t E R ,  K = K(x, t) and M = M(x, t), (3.7) 

in which V is the region occupied by ~ at time t, and x is the point of application of K and M, 
respectively. By definition the virtual work is 

8~¢ = f (K, Sx)dV+ f (M, 8~)dV, (3,8) 
v v 
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which with the use of (3.5) can be written as 

6 d =  f {(K, 6e)+ ( (x -e )  ^ K + M ,  6~o)}dV 
V 

= (3¢ ~, 6c) + (o//0,6~o), (3.9) 

w h e r e , =  f KdV and Jto = f {(x--c)A K + M } d V  
V V 

are the resultant force and the resultant moment with respect to o on the body, respectively. 

Using (3.1) 1 and (3.6) in (3.9) we find for the generalized force ~2t3 defined by 

6 d = Q#6q ~, (~ not summed), (3.10) 

the expression 

(3.1 1) 

4. Kinetic energy 

From now on we choose the origin of the moving frame o in the centre of  gravity of  the bod~ 

This means that for every t 

f ( x - c ) p  (x, t ) d V  = O, (4.1) 
v 

in which p (x, t) is the density defined on x and t. By definition the kinetic energy T is 

1 r = 7"(t) = ~ f (~(t), V(t))pdV, (4.2) 
V 

into which we can substitute (2.12). In view of the structure of  the expression obtained in this 

way we define 

• 1 1 ( ~ ,  J c o ) ,  T(q,  q, t) = ~ m (~, ~) + (4.3) 

where we have written for short 

and 

~C 
b.= De (l ~ + _ ~  , m= f pdV=constant 

aq o v 

J = f [ ( x - - c , x - - c ) I -  (x--c) ®(x--e)]  pdV. 
V 

The scalar m is the mass of  ~ and the linear form J is its central inertia tensor• We note the re- 
lation 
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T(~(t), ~(t), t) = ¢(t). 

The first term in the right-hand side of  (4.3) 1 is called the translational kinetic energy, and the 

second one the rotational energy. The components  of  J with respect to the fixed basis and the 
moving one are denoted by Jij and J]), respectively, yielding the representations 

J = Jij ei ® ej, with 

Jij = v f [(xk- cD (xl , -cDSi~ - 

and 

J = J~/fi ® fj '  with 

Obviously 

(xi-ci)  (xj-  cj)] pdV, 
(4.4) 

(4.5) 

Jii = Jii(q, t), (4.6) 

while the components  J~j are constants. Finally, we note the relation 

Jq = Qik QjtJ'kt, (4.7) 

which follows from (4.4) 2 , (4.5) z and (2.1), or can be inferred from Cartesian tensor transfor- 
mation rules. 

5. Statement of the problem 

For the moment  being we consider a material system consisting of  N1 mass points m/t, i = 1 ,2 ,  
.... N1, and N2 rigid bodies (masses m/2, central inertia tensors ji, i = 1 , 2  . . . .  , N2). As before we 
suppose that we can calculate the position and the velocity of  each material point, whether a 
mass point or a point of  a body,  from n generalized coordinates qa,  n generalized velocities 
qa and the time t. In the usual way we obtain an expression for the kinetic energy T in the form 
T = T(q, ~l, t). We observe that  three types of  terms contribute to it: the kinetic energy T1 of  
the mass points, the total translational energy 7"2 of  the rigid bodies and, finally, their total 

rotational energy/ '3  

T = T1 + T2 + T3. (5.1) 

Our aim is to derive Lagrange's equations 

a [.a T(q, q, t) 
dt ~ bdl ~ 

q=ff(t) 

_ BT(q,q,t) 
aq ~ l =O_t~(~(t),t), 0 3 = 1 , 2  ..... n) 

q=q'(t) 

(5.2) 
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from the balance laws for mass points and rigid bodies. In order to simplify further analysis we 
note that, similar to (5.1), there are three contributions to the generalized force Qt3, viz., Qt~ 
resulting from the forces exerted on the mass points, L)O2 contributed by the forces applied to 
the bodies and, f'mally, ~)t~3 as a result of the moments (with respect to the distinct centres of 
gravity of the bodies) acting on the rigid bodies 

(5.3) 

In view of this and (5.1) we can prove (5.2) by establishing its validity for the quantities T and 
~9~ labelled 1, 2 and 3 separately. Since the proofs for the labels 1 and 2 are trivial and can be 
found in a multitude of textbooks, we dispense with them here. (We note that the identities 
(2.26) 1 and (2.26) 4 are to be used only). Hence we can confine our attention to the proof of 
(5.2) for / '3  and L9~3, pertaining to the rotations of the bodies about their centres of gravity. 
Observing that the distinct bodies contribute to/"3 and Q~3 additively as well, we single out one 
rigid body without loss of generality. In this way we return to the previous sections the results 
of which are to be applied to a rigid body that rotates about its centre of gravity, i.e., 

e = 0. (5.4) 

We shall prove (5.2) starting from the balance law of angular momentum referred to the centre 
of gravity of the body 

d (Y(t)~o(t)) = f {~(t) ^ I~(t) + l~l(t)}dV=~o(t) ,  
dt v 

(5.5) 
where the meaning of the various quantities and symbols follows from Sections 3 and 4. 

Let us now consider a virtual rotation 6~o resulting from the virtual change fiqO. Taking the 
inner product of 8~o and both sides of (5.5), we fred 

( d ~  (J ~) ,  8~o)= ~)~6qt~, (/3 not summed), (5.6) 

where we have used (5.4), (3.9) and (3.10). On comparing (5.6) with (5.2), after the elimination 
of 6~0 from (5.6) with the aid of (3.6), we see that we have to prove 

dt ~aq ~ 
_ a t  

q=ff(t) aq~ q=q"(t) 
_(_~ (y~), a__~ )=0, 
(a=  1, 2 ..... n). (5.7) 

To this end we substitute (4.3) l and (5.4) in (5.7). In this way the latter is transformed into 

~ , ~  --½ (Jo2,~) =0,  (¢~=1,2 .... ,n). (5.8) 

q--if(t) q=q'(t) 

In the next two sections we shall prove (5.8) in two ways. 
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6. Proof with the use of  coordinates 

In this section we start from the representation for J on the fixed basis according to (4.4). Using 

(4.6) we transform (5.8) into 

) ffa, ~ aq '~ - ~ ffa, 

q=q'(t) q=q'(t) q=~'(t) 

dt ~ aq~ 
q=q(t) i~qa 

q=ff ( t ) )_( j¢ .~ ,  0 aq a~QT 
q=~(t) 

(6.1) 

With the use of  (2.24) this can be worked out further into 

I_ i~Qjp (~kp + ~ mktQi/  QtpQ.rnpl =0, 1 e aQmj (J6o)i ei/k aq~ aq ~ (6.2) 

(where we have omitted the explicit reference to the actual motion q = ~(t)). Since this expres- 
sion has to vanish for all values of the components of  J¢o, the form between square brackets 

must be equal to zero identically 

~Qm/ 
aQ/...___~p OkP + ½emklQi/ ~ QlpOkp = o. (6.3) --eijk Oq# ~q# 

To prove this identity we rewrite the first term on the left-hand side through the use of (2.11) 

and (2.18) as follows 

m a Q j p  aQi-----L O.kp=½eokQ,pQjr aQt~ O.kp + ½eiik--Qk~QtpO.tr --ei/k Oq# aq# aq# 

Then we interchange the indices r and p in the last term and use (2.17), obtaining 

aQj_._..~p ~alr 
O-kp =-~ei/kQir ~q~ (QkpQtp-QtpOkp) -ei/k 3q# 

~Qtr 
1- e ~ eklmemtsQtpQsp =--2 ijk Qjr aq~ 

I (el aQir =~ tsQjr aqO aQ]r ~ Qtp (2sp. 
- -  eits air aqa ! 

We note that the second term is zero. Using (2.17) 1 again and relabeling some dummy indices, 

we retain the first term in the form 
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- ~ e m k t Q q  ~aQmJ OlpO-k~. (6.4) 
aq# 

With (6.4) the left-hand side of (6.3) vanishes identically. Hence, we have proved (5.7). 
Alternatively, we can proceed in a less formal way to verify this identity. To this end we de- 

fine the skew-symmetric tensor A by 

A = ~O QT. (6.5) 
aqa 

With (6.5) and (2.8), the definition of ~2, the left-hand side of (6.3) can be written in the form 

l (6.6) -e i jgAlp  ~2tcp + ~ Amiemk t  ~kl" 

Elimination of ~2 from this expression with the aid of (2.10) 1 yields 

eijkAjp ekplCO l -- Ami~Orn = Aji¢.o j - Ajj¢.o i - Aji6o j. 

Since A is skew-symmetric this expression is equal to zero identically. Hence, we have proved 
(6.3) again. 

7. Proof without using coordinates 

We start from (5.8) in the form 

where by definition, and since c = O, 

J6o = f pxA  (¢OA x)dV. (7.2) 
v 

(Again, we delete the independent variables qa, ~a and t, and do not refer to the motion 
q=~(t) explicitly). From (7.2) we Fred 

( ) )  ( ½ ] ~ ,  co) = J ~ ,  + ~ ,  ^ (~o ^ x) dV aq~ ~ fv p ~q~ " 

Using (2.28) with (5.4) together with the vectorial identity 

v ,  (~ ,  {(e ^ x) ^ (~o ^ x)})  - (x, {(e ^ ~ )  ^ (~o ^ x)})  = o 

this relation is readily transformed into 
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a 
( i ( J w ,  co))= J¢o, + f  x, A6o A(OJAX) pdV  

aqa 

) ) = - -  A OJ (xA(xAOJ))  dV, (7.3) Jco, + p oaq ~ , 

On using the definition (7.2) of J we rewrite (7.3) as 

a ( ½ ( J ¢ o , ¢ o ) ) =  J¢,.,, - ^ ~  J ~  . 
~q~ 

Substituting this in (7.1) and applying (2.29) yields 

J d a¢o am ( 6o A - - ~  q=ff(t) = 0 .  

Evidently (7.1) vanishes and this proves that (5.7) is true. 

8. Discussion 

We have proved the validity of  (5.7) in two ways in Sections 6 and 7, respectively. As has been 
sketched in Section 5, we can infer Lagrange's equations (5.2) from it. On comparing the methods 
used in Sections 6 and 7, we see that the analysis without the use of  coordinates is very simple 
and is to be preferred for that reason above the application of coordinates for the rotational 
motion, whether Eulerian angles [3] or components of  an orthogonal tensor (Section 6) are 
used. 
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